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We present a brief description of a valence-universal multireference coupled cluster (VU-MRCC) theory that
can handle completely general incomplete model spaces, remaining close to the intermediate normalization
(IN) condition for Ω as much as possible without violating extensivity and without the use of a post facto
correction. In this formalism, the connectedness of the cluster operators as well as effective Hamiltonian and
hence the extensivity of the corresponding roots is achieved by invokingappropriate decoupling conditions
on the special type of wave operatorΩ ) {exp(S + Xcl)} satisfying the Bloch equations in the Fock-space
S in an excitation operator andX is a closed operator (denoted by cl). This special type of wave-operator
leads to a unique partition of the excitations from the model space into those generated by the cluster operators
(open and quasi-open) and those generated by the effective Hamiltonian (closed). In this formulation, for
everyXcl, there is a counterterm from{exp(S)}cl canceling each other. This leads to a connected expressions
for cluster amplitudes, using the constraintΩcl ) 1. The new form of the effective Hamiltonian preserves the
extensivity of the target energies. Our analysis implies that IN forΩ is a valid size-extensive normalization
for certain special IMS such as the quasi-complete model space and the isolated incomplete model space.

I. Introduction

Prompted by the conspicuous success of the single-reference
coupled cluster (SRCC) method,1-4 its generalization to en-
compass open-shell and quasi-degenerate cases has been at-
tempted by several authors. Diverse methodologies have been
put forward, which emphasize different physical aspects of
electron correlation in the quasi-degenerate situations. This
difference in emphasis is reflected in the use of different ansatzes
for the wave-operator,Ω, and/or in the span of the model
functions in the quasi-degenerate space, which can involve
model spaces with varying numbers of active electrons or a fixed
number of active electrons. Most of the earlier formalisms were
built on the concept of effective Hamiltonians and used a
complete model space (also called a complete active space).
Using the customary and convenient intermediate normalization
(IN) for Ω, all these developments arrived at connected (size-
extensive) cluster-operators, which led to a connected effective
Hamiltonian. The target energies were obtained via the diago-
nalization of the effective Hamiltonian defined over the complete
model space (CMS). Size-extensivity of the energies thus
obtained were guaranteed by the completeness of the active
space. Another approach is to abandon the concept of the
effective Hamiltonian altogether and either focus on only one
state of interest (usually termed as state-specific approach5-9)
or target only those roots that are of interest (the intermediate
Hamiltonian approach10-14).

As emphasized above, the two main classes of effective
Hamiltonian-based multireference coupled cluster (MRCC)
methods are designed to address different aspects of the
correlation problem for quasi-degenerate systems The state-
universal (SU) multireference coupled cluster (SU-MRCC)
approach15 focuses on the description of a system with a fixed
number of electrons, making it the method of choice for states
with a fixed number of electrons, and in the study of potential
energy surfaces (PES). The valence-universal (VU) multiref-
erence coupled cluster (VU-MRCC) approach,16-22 on the other
hand, targets states with varying numbers of valence electrons
through the use of a single wave operator, akin to the single-
reference (SR) case, such that it correlates not only the reference
functions of interest with a definite valence occupancy but also
reference functions of all the lower valence (subduced) sectors,
obtained by deleting the occupancies systematically. Thus to
define this operator uniquely, one needs to simultaneously
consider not only the system of interest but also the correspond-
ing ions that result from the successive removal of the electrons
occupying the active orbitals. The method thus becomes the
natural method of choice for computing energy differences of
spectroscopic interest such as ionization potential, electron
affinity, double ionization potential and excitation energy.17-22

The increased computational requirements for VU-MRCC is
offset by the increased information content of the formalism,
allowing one to take care of the differential correlation energy
attendant upon deletion or addition of electrons or excitations,
which is needed for a balanced description of energy differences.

Despite their rigor and elegance, applicability of the MRCC
theories using a CMS has been somewhat restricted until today
owing to the perennial problem of intruders.23 This arises from
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string mixing of some low-lying virtual functions with some
high-lying model functions spanning the complete model space.
One may imagine that the problem of intruders can be avoided
using incomplete model space (IMS) instead of CMS, where
the offending model functions mixing strongly with the virtual
functions are deliberately kept out of the model space. Generally,
the reference functions that dominate the wave functions
corresponding to the low-lying excited states span anincomplete
model space, because in most chemically interesting systems,
these low-lying excited states are likely to be associated with
single and double excitations from the ground state instead of
attributing a given number of active electrons and active orbitals
to all possible excitations. If one shifts the high-lying functions
of the CMS to the virtual space (thereby making the model space
incomplete in nature), this seems like a natural starting point
from the physical point of view, where one may avoid intruders
and at the same time target the low-lying states of interest.

Such a straightforward development, however, is fraught with
the theoretical difficulty of ensuring extensivity of the computed
target energies. All the standard versions of MR theories with
effective Hamiltonians exploit the use of CMS to maintain the
connectedness of the effective Hamiltonian, which automatically
ensures the extensivity of energies. Such, unfortunately, is not
the case in an IMS-based theory. Even if it were possible to
get a connected effective Hamiltonian in an IMS, the computed
state energies on diagonalization would still have been inex-
tensive, just as in a CI in an IMS. The theoretical constraints
on the effective Hamiltonian, which would guarantee the size-
extensivity of the energies, is obviously somewhat more
intricate.

The reason size-inextensivity appears in a diagonalization of
even a connected operator in an IMS can be traced by looking
at the diagonalization problem as an infinite order perturbation
theory, thereby monitoring all the connected and disconnected
terms that are generated at each order of perturbation.24 Let us
briefly recapitulate the analysis here, because this forms the
starting point of generating a size-extensive MRCC theory in
an IMS. If we start from one of the model functions as the
unperturbed function for one of the target energies, and take
care of other model functions in an IMS, interacting via the
matrix elements of a connected operator by a Rayleigh-
Schrödinger (RS) perturbation, then at each order there will be
two kinds of terms: (i) the so-called direct term, which involves
a sum over states involving transitions from the starting model
function to all the other model functions, eventually returning
to the starting model function itself, and (ii) the so-called
normalization term, which involves a product of a norm-
correction involving the perturbation correction of the wave
function and energy shifts with various orders of perturbation,
with a negative sign. The normalization term gives rise to two
distinct types of entities. In one, there are no common orbitals
among the norm factor and the energy shift factor. They are,
therefore, algebraically disconnected, and size-inextensive. By
adding certain sets of similar such terms together and by using
what is known as the Franz-Mills identity,25 we can rewrite
these disconnected terms as a sum over states expression just
like as in the direct term. The intermediate states entering the
sum in this expression are generated by the same excitations
from the unperturbed functions as are involved in each factor
of the disconnected normalization term, but the intermediate
states are produced by the action of these excitations on some
other model function generated by these excitations, rather than
on the starting unperturbed function itself. If these intermediate
functions thus generated belong to the IMS, then they would

be exactly canceled at the same order of perturbation stemming
from a direct disconnected term, which necessarily involves only
the sum over the model functions in the IMS. If, on the other
hand, an intermediate state generated does not belong to the
IMS (this will always happen for some terms, when the model
space is incomplete), then such disconnected normalization
terms will never get canceled by the analogous disconnected
counterterms from the direct term, simply because there is no
such intermediate state in this term. This is the real reason
behind the appearance of disconnected terms at each order of
perturbation while following the diagonalization procedure in
an IMS as an infinite order perturbation theory. It should be
mentioned here that there is another set of normalization term
where there are common orbitals in the two factors. These so-
called EPV (exclusion principle violating) terms are thus
algebraically connected and, hence are harmless as far as size-
extensivity is concerned. Because in a CMS, excitation on any
model function to another involves only active orbitals, they
lead only to excitations involving the functions in the CMS itself,
and hence, all the disconnected terms from the normalization
term get canceled by a corresponding direct term. In contrast,
although the excitations from the starting model function to
another model function in a perturbation still involves only
active orbitals, the intermediate states generated come from the
action of these excitations on model functions other than the
starting one, and these may belong to the complementary active
space which, together with the starting IMS, span the CMS.
Because the intermediate states appearing in the direct term
never involve the functions of the complementary active space,
these disconnected normalization terms never get canceled by
any of the direct terms. This analysis holds as much for a
diagonalization on a connected effective Hamiltonian in an IMS
as for a CI in an IMS.

From what has been discussed above, it is clear that if one
could ensure that excitation from the starting model function
could be confined to only those whose action on other model
functions restrict the excitation also only within the IMS, then
there would not have been any disconnected term in the
perturbation involving intermediates lying outside the IMS, and
the problem of inextensivity would go away for the perturbative
diagonalization of the matrix of the connected operator in an
IMS. Because one can start with any model function as the
starting unperturbed function, it follows that it is necessary that
the effective operator should be such that any excitation
involving this operator should not lead to excitations outside
the IMS by its action on any model function. Following the
earlier works of Mukherjee,26 we want to call such types of
excitations connecting the model functions as “closed”. In
contrast, types of excitations where their action on some
functions in the IMS generates functions in the IMS, but their
action on some other model function takes them to the
complementary active space, are called “quasi-open”. As we
have just now emphasized, the effective Hamiltonian should
be both connected and “closed” for ensuring extensivity of the
target energies on diagonalization in an IMS.

It was shown by Mukherjee,26 that this can be ensured by
including in cluster operators in the wave-operatorΩ not only
excitations leading to virtual functions (via excitations which
we will call “open”) but also all the quasi-open excitations. The
latter involves excitations only active orbitals but, in contrast
to the closed operators, may or may not lead to excitations to
the complementary active space. The cluster amplitudes for the
quasi-open operators should be determined from the “decoupling
conditions” that the matrix elements of all the quasi-open
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components of the transformed operatorL ) Ω-1HΩ should
vanish. This can be accomplished in a straightforward manner
via the use of Bloch equation27 in an IMS. Mukherjee showed
that, if one includes inΩ only open and quasi-open operators
(which is the minimal decoupling conditions), then it can
generally so happen that the customary intermediate normaliza-
tion for Ω would have to be abandoned. This comes about
because the quasi-open operators can lead to excitations within
the IMS and also because products of quasi-open cluster
operators can be closed as well. By including only open and
quasi-open operators inΩ, extensive MRCC formalisms have
been developed both for VU21,26,28 and for SU29,30 MRCC
formalisms. Using the same idea, state-specific MRCC theory
has also been developed.7

It should be recognized at this stage that the decoupling
conditions implicit in the Bloch equation for an IMS impose
vanishing amplitudes for all the open and quasi-open operators
of the transformed HamiltonianL. Clearly, this still leaves open
the possibility of choosing the closed component ofΩ, viz Ωcl.
The normalization that comes closest to the IN forΩ would be
to chooseΩcl ) 1cl. The more desirable choicePΩP ) P would
be incompatible with the decoupling conditionsLq-op ) 0,
because these conditions, rather than certain arbitrary conditions
imposed onΩq-op, determineΩq-op.

From now on, we refer to both open and quasi-open operators
generically as “external”, and label all such operators asAext.
Similarly, both quasi-open and closed operators would hence-
forth be collectively termed as internal, labeled asAint.

Of course, it is desirable to look for a size-extensive method
for IMS using IN forΩ, because, for one, this would generate
a simpler expression forHeff just as in a corresponding theory
using CMS and, for other IN, allows a straightforward genera-
tion of the cluster amplitudes from a knowledge of the CI
coefficients for an exact function.31 However, the situation is
rather tricky. One may imagine that, once a size-extensive
formalism is developed with a cluster ansatz forΩ containing
open and quasi-open operators, it is possible to introduce at the
final stage of the formalism to impose the IN on the wave
operator via the transformation

which generates a new effective HamiltonianH̃eff, given by

Being a similarity-transformed operator of the originalHeff and
H̃eff produces the same roots. Such an approach was indeed
suggested long ago by Chaudhuri et al.,24 who also pointed out
the attendant difficulties. Though this stratagem does produce
size-extensive energies, despite the use of IN for the wave-
operator, it is apost facto restorationof IN after having
generated a connectedHeff without the IN. A straightforward
generation of the modified wave-operatorΩ̃ without the
intermediary of theΩ is not theoretically possible.

We pursue in this paper the idea that the only feasible direct
approach to generate an MRCC theory with IMS, which is
manifestly size-extensive and which uses a normalization
condition onΩ that is as close as is possible to IN, is to impose
Ωcl ) 1cl as the natural choice of normalization. As it turns
out, the above condition onΩcl also leads to the same type of
simple expression forHeff as for the CMS, though (unlike the
use of IN) it is not possible to generate the cluster coefficients
from the knowledge of CI coefficients from a FCI alone. There
have been attempts to generate a SU-MRCC theory where IN

on Ω via the use of additional internal cluster operators was
imposed disregarding the attendant inextensivity of the target
energies.31 It was shown, however, that with choice of the
product separable IMS, such energies are additively separable
in the limit of noninteracting subsystems, and the theory is size
consistent. Our major concern in this paper is, however, to
ensure size-extensivity and we want size consistency to naturally
follow for a product separable IMS.

We present in this paper precisely such a formulation via
the use of an alternative cluster ansatz forΩ, which imposes
the conditionΩcl ) 1cl through the inclusion of additional
“closed” cluster operators. We develop a VU-MRCC theory for
IMS using this new ansatz.

The paper is organized as follows. In section 2 we will present
the theoretical developments of our VU-MRCC theory for an
arbitrary model space. Section 3 summarizes the main contents
of the paper and concluding remarks.

II. Theoretical Developments

Before embarking on the theoretical developments of our new
VU-MRCC theory using IMS, it is pertinent to introduce certain
concepts and certain notations that will set the scenario.

A. Preliminaries. In VU formulation of the MRCC theory,
one defines a wave-operatorΩ, which generates exact functions
Ψk

(nv) by its action on the starting MR functionsΨ0k
(nv), given by

where nv is the number of valence electrons of the model
functions φµ

(nv). In a VU-MRCC theory, one simultaneously
considers model spaces with different numbers of valence
occupancies, so thatnv runs over a rangenv ) 0, mv, wheremv

is the number of valence electrons of our interest. BecauseΩ
generates exact functions for all model space MR combinations
Ψ0k

(nv), Ω is valence universal. Clearly,Ω contains many more
cluster operators than are needed to construct target states
Ψk

(mv).
In the traditional VU-MRCC formulations using an IMS, it

is customary to define both the actual IMS withnv active
electrons by the projectorP(nv) and the complementary active
space characterize by the projectorR(nv). The unionPUR forms
the CMS.

The Bloch equation for the variousnv valence problems is
given by

It is also useful to define valence ranknv of an operator as
the number of valence destruction operators contained in it. To
have enough flexibility to generate exact functions from allnv

valence model functions, it is imperative to include inΩ
excitation operators of various valence ranksnv ) 0, mv. The
simplest set of CC equations for a VU-MRCC results if one
uses anormal ordered exponential ansatzfor Ω as

S(nv) are the set ofnv valence cluster operators. The normal
ordering is done with respect to the zero valence SR model
functionφ0, taken as the vacuum. Owing to the normal ordering,

Ω̃ ) Ω[PΩP]-1 (1)

H̃eff ) PΩPHeff[PΩP]-1 (2)

Ψ0k
(nv) ) ∑

µ

φµ
(nv) cµk

(nv) ∀ nV (3)

HΩP
(nv) ) ΩPHeff

(nv)P (4)

Ω ) {exp(S)}

S) ∑
nV)0

mv

S(nv) (5)
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there is a hierarchical decoupling of the equations for the cluster
amplitudes for various valence ranks in the following sense:
for annv valence Bloch equation no cluster operators of valence
rank greater thannv can appear. Thus, one can start for the zero
valence problem upward all the way to themv valence problem
where at each valence level the only unknowns are the cluster
amplitudes of the same valence rank, with the frozen cluster
amplitudes of all the lower valence ranks. This has been termed
a subsystem embedding condition (SEC) by Mukherjee and
others.16,17,19We also define an operator in normal orderA[nv]

as

With this notation

We also note that, owing to normal ordering

which is a compact representation of SEC.
If one starts from anmv valence CMS, deletes one electron

from each model functionφµ
(mv) in all possible manners and

collects all the distinct (mv - 1) valence model functions thus
generated; the resultingsubducedmodel space is also a CMS
for the (mv - 1) valence problems. One can go all the way
down to the zero valence problem by successive deletion of
electrons, thereby generating all the lower valence CMS in the
process. For an IMS, however, the model spaces generated by
the subduction process depend on the actual starting IMS.26

Thus, for anmv valence IMS deletion of one electron from all
model functions of IMS and collection of distinct (mv - 1)
valence model functions will generate the corresponding sub-
duced IMS with (mv - 1) valence electrons. Again, the process
can be repeated all the way down to the zero valence levels,
producing successively IMS of the lower valence ranks. By
construction, the one valence subduced model space is always
complete, and so also is the MS for the zero valence problem,
which is spanned by just the model functionφ0, the vacuum.

In the original size-extensive formulation of Mukherjee26 for
an IMS Ω was chosen to be of the form

As discussed in section I, this choice guarantees size-extensivity
of the target state energies, which is predicated both to the
connectedness of theHeff and to its closed nature. Owing to the
appearance of the quasi-open cluster operators inΩ, there is
no intermediate normalization, andPΩP * P as well asΩcl *
1cl in general. Substituting eq 7 in eq 4, and using the generalized
Wick’s theorem,33 it follows that

where the symbols{A exp(S)} and{exp(S)B} stand respectively
for all connected composites obtained by joining all possible
powers ofS with A andB, excluding contractions among the
variousS. Using SEC, proceeding upward in valence ranks from
the valence rank zero, and equating the external operators of

both sides of the Bloch equation with a given valence rank,
one arrives at

Equation 11 is valid for each external operator (open or quasi-
open, as the case may be) of each particle rank of the composites
appearing in the equation, and for each valence rank. Similarly,
equating the closed components of the Bloch equation, written
in normal order for each valence rank, and using generalized
Wick’s theorem, one obtains

which definesHeff of various valence ranks.
In more compact form, usingΩ[nv] for {exp(S[nv])}, the

working equations for determining the cluster amplitudes are
given by

and the effective Hamiltonians are found from the expression

Equations 11 and 13 are entirely equivalent to the decoupling
conditions on the transformed HamiltonianL, with minimal
normalization constrains imposed onΩ ensuring the following
property ofL:

As was shown by Mukherjee, the above choice ofΩ leads to
an Heff

[nv], as the closed part ofL:

which is equivalent to its implicit definition via eq 12 or (14).
Equation 12 or 14 indicates thatHeff is both connected and
closed, which ensures the size-extensivity of the computed
energies.

Because a large class of chemically interesting states are
qualitatively well-described by model functions spanning a set
of variousm-hole-n-particle excited functions generated from
φ0, it becomes useful at this stage to generalize the concept of
active orbitals to encompass both holes and particles and use
superscripts (m, n) to indicate in an operatorA the hole and
particle valence ranks separately, as, for example, byA(m,n). With
this generalized notation, the working equations stemming from
Bloch equation would look like

and

A[nv] ) ∑
lV)0

nV

A(lv) (6)

Ω ) {exp(S[mv])} (7)

ΩP(nv) ≡ Ω[nv]P(nv) ) {exp(S[nv])}P(nv) (8)

Ω ) {exp(S)} ≡ {exp(Sop
[nv] + Sq-op

[nv] )} (9)

{Hexp(S) exp(S)}P(nv) ) {exp(S) exp(S)Heff}P(nv) ∀ nV (10)

{H{exp(S[nv])}}ext
(nv)P(nv) ) {{exp(S[nv])}Heff

[nv]}(nv)P(nv) ∀ nV

(11)

{H{exp(S[nv])}}cl
(nv)P(nv) ) {{exp(S[nv])}clHeff

[nv]}(nv)P(nv) ∀ nV

(12)

{HΩ[nv]}ext
[nv]P(nv) ) {Ωext

[nv] Heff
[nv]}[nv]P(nv) (13)

{HΩ[nv]}cl
[nv]P(nv) ) {Ωcl

[nv] Heff
[nv]}[nv]P(nv) (14)

Lop
(nv) ) 0 ∀ nV ) 0, mv

Lq-op
(nv) ) 0 ∀ nV ) 0, mv (15)

Heff
[nv] ) Lcl

(nv) (16)

{HΩ[k,l]}ext
(k,l)P(k,l) ) {Ωext

[k,l] Heff
[k,l]}(k,l)P(k,l)

{HΩ[k,l]}cl
(k,l)P(k,l) ) {Ωcl

[k,l] Heff
[k,l]}(k,l)P(k,l)

∀ (k, l ) ) (0, 0)- (m, n)

(17)

Size-Extensive Normalization for MRCC Theory J. Phys. Chem. A, Vol. 109, No. 50, 200511465



We emphasize again here that, owing to the lack of
intermediate normalization, the customary expression forHeff

no longer remains valid, and one must use eq 12 to iteratively
solve for it. Thus, it makes sense to look for an alternative
normalization of the operatorΩ, which makesHeff take the same
simple expression as{HΩ}cl, as in a CMS, but maintaining the
size-extensivity of the target energies. We show in the next
subsection that such a choice is indeed possible by the inclusion
of additional closed operators inΩ.

B. Imposition of Ωcl ) 1cl in a Size-Extensive VU-MRCC
Formulation with IMS. As indicated in the Introduction and
the subsection above, we now present a formulation where we
impose the normalization condition

on Ω, to arrive at the much simpler expressionHeff ) {HΩ}cl

even for an IMS, while ensuring the size-extensivity of the target
energies. We will achieve this, following the earlier ideas of
Chaudhuri et al.,24 by including in Ω certain closed cluster
operatorsX of various valence ranks (k, l). Thus we introduce
a new cluster wave-operatorΩ, given by

The cluster amplitudes of these operators would be determined
from the condition that, for each hole-particle valence rank
(k, l), the closed component ofΩ would satisfy eq 18:

or,

This leads to

Because we are imposing a normalization condition on just
the closed portion ofΩ, leaving its external (open and, in
particular, quasi-open) components to be determined by the
decoupling conditions eq 17, there is no conflict between them,
and one would expect size-extensivity of the computed energies
would remain unaffected. As we show below, such is indeed
the case, though a demonstration of this for any arbitrary model
space (which can involve valence holes as well as valence
particles) requires a careful exposition and analysis of the
structure of the Bloch equation in the VU-MRCC theory using
IMS.

To make our presentation clear, we proceed in two steps, by
taking first the set of IMS covering most of the common choices
(where the proof of size-extensivity of the energies in more or
less straightforward), and take up the second set of IMS where
the proof becomes somewhat more involved. The proof used
in the second set of IMS is the more general, which subsumes
the first set of IMS, so ultimately the proof for the second would
have been enough. But, as we just indicated above, we proceed
stepwise for the ease of following the proofs.

Let us first consider such IMS where the valence universal
Ω has always some creation operators in theS. This is always
the case either when the vacuumφ0 itself is contained in the
IMS or when the IMS contains electrons differing in the number
of electrons as compared toφ0. For such IMS, one can arrive

at the working equations for the various cluster amplitudes of
S of different valence ranks via SEC as

Because there are always creation as well as destruction
operators in eachS, for every composite on either side of eq 23
containing anXcl of a given valence rank, there are always
powers ofSq-op operators forming a closed entity of the same
valence rank, joined from right or left of, respectively,H and
Heff. From now on, for brevity, we drop the subscript “q-op”
for S and also refer to the powers ofSq-op that are closed as
“closed powers”. Owing to the imposition of the normalization
condition, eq 20 onΩ, all such closed powers ofSwould cancel
the correspondingX, via eq 22. In the final working equations,
there would thus not remain anyX operators at all! Also, there
would not be any closed powers ofSoperators connected toH
or Heff. Figures 1 and 2 indicate such cancelations.

The final form of the working equations then become

The expression forHeff is given by

where the prime on{exp(S)} indicates that all the closed powers
of S are to be excluded from eqs 24 and 25.

One should note that the counterterms coming from the closed
powers ofS cancelingX is possible only because all theS
operators forming a closed power can appear in the connected
composites on either side of eq 23. In the case of the vacuum,
φ0 itself is not a part of the model space, it is essential to include
in Ssome de-excitation operators as shown in Figure 3, which
have no lines to the left, indicating that there are no hole-
particle creation operators in suchS. In such situations, it is
entirely possible that there are some composites in eq 23
containingX for which a counterterm stemming from closed
powers ofSdoes not exist simply because such closed powers
cannot exist in the connected composites on either the right or
left sides of the equation.32 Figure 4 indicates such a situation

Ωcl ) 1cl (18)

Ω ≡ {exp(S+ X)} ) {exp(S[m,n] + X[m, n])} (19)

{Ωcl}
(k,l) ) 1cl

(k,l) (20)

{exp(S+ X)}cl
(k,l) ) 1cl (21)

Xcl
(k,l) ) -{exp(S)}cl

(k,l) ∀ k, l (22)

Figure 1. Diagrammatic depiction of cancelation of products of quasi-
open (Sq-op) operators producing a closed composite by a term
containing closedX operators.

Figure 2. Diagrammatic depiction of mutual elimination of all those
diagrams in the working equation of VU-MRCC when, for anyX
operators (Figure 1a) appearing in a connected term, there is counterterm
(Figure 1b) produced byproducts ofSq-op operators that are closed.
The filled circles denote the vertexes for the cluster operators, and the
open circle denotes anH vertex.

{H{exp(S+ X)}[k,l]}(k,l)P(k,l) )

{{exp(S+ X)}[k,l]Heff
[k,l]}ext

(k,l)P(k,l) (23)

{H{exp(S)}′[k,l]}(k,l)P(k,l) ) {{exp(S)}′[k,l]Heff
[k,l]}ext

(k,l)P(k,l)

(24)

{H{exp(S)}′[k,l]}cl
(k,l) ) Heff

(k,l) (25)
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where the IMS consists of all one-hole-one-particle excited
functions generated fromφ0. The operators shown in Figure
4a,b are each quasi-open in this case, because the excitation
operator in Figure 4a leads to an excitation to a two-hole-two-
particle excited state, which is outside the IMS, and the de-
excitation shown in Figure 4b leads toφ0, which is also outside
the IMS. Their product, however, is closed, as shown in Figure
4c, which can be eliminated by introducing a closed operatorX
satisfying the equation shown diagrammatically in Figure 4d.
Although this does restore the normalization condition, eq 21,
in the connected composites of eq 23 there is no such
cancellation of the operatorX because the closed power of
Figure 4c cannot appear in a composite entity as shown in Figure
4e,f. Figure 4e is a valid diagram whereas Figure 4f is not and
it does not appear in eq 23. Hence, the term containingX of
Figure 4e survives, becauseX is negative of two disconnected
operators ofS; as shown in Figure 4d,X itself is disconnected
and hence the presence of anX in eq 23 spells a breakdown of
the connectivity of the working equations. This is an unwar-
ranted and awkward situation. To cover such cases, we suggest
a somewhat more involved proof, as delineated below.

We start from the original Bloch equation withΩ defined in
eq 19 and rewrite it in normal order using generalized
Wick’stheorem. Equating the external components for each
valence rank and excitation rank on both sides of the equation,
we have

where we have omitted the superscripts showing the valence
rank of the associated operators for brevity. Canceling all the

X operators in the portion of{exp(S+ X)} present on both sides
via eq 22, we have

where all the primed quantities indicate that all the closed
powers ofShave been canceled by the counterterm containing
X. Because we are considering the most general IMS, where
not allX operators connected toH or Heff may have a counterpart
from some closed power of cluster operatorsSq-op, someX
operators in the connected parts will remain uncanceled.

If we now introduce a new composite obtained by bringing
in some quasi-open powers ofSq-op operators alongside the
connected terms in the Bloch equation (eq 26) such that the
missing closed counterpart withSq-op for each X can be
generated, then the proof of the connectivity of the operatorsS
and consequentlyHeff can be accomplished. We denote com-
posites thus generated from two mutually disconnected quantities
A andB as{AB}. To illustrate this procedure of generating the
composite, let us consider the diagram in Figure 4f. The entity
containing twoSq-op operators connected toH is the analogue
of the operatorA. The excitation operator requires a de-excitation
operator as another factor to generate a closed power ofSq-op.
Thus the de-excitation operator unconnected toA is the entity
B, and the two terms unconnected to each other but generating
a closed power ofS in the normal ordered product can be
denoted asAB. This disconnected composite of Figure 4f gets
exactly canceled by the connected-looking counterterm contain-
ing X, as appears in Figure 4e. Thus, generally speaking, we
can rewrite eq 27 in terms of the composites just defined as

where we have brought in those quasi-open powers
of S on both sides of the equation, that generate the
composites which together with the quasi-open powers

of S in the connected quantities such as{H{exp(S+X)}} or

{exp(S + X)′extHeff}, to generate a closed term under the bar.
We note here that the term{exp(S)}′ gets regenerated in eqs
26 and 27 even after we have removed from it the powers of
cluster operators that are quasi-open because of the exponential
structure of the infinite series{exp(S)}′.

Using the SEC as before, we then have

where we now show explicitly the hole-particle valence rank
(k, l) for the first time, which we omitted earlier for brevity.
Equation 29, unlike the eq 28, contains only the composites
with bar, and no other factors such as{exp(S)}′.

Obviously, now we can cancel all the terms withX in eq 29
with the corresponding closed powers ofS in the composites
under the bar, and hence get

where we have brought back the contracted quantities again,
because all the closed entities under the bar withX and powers

Figure 3. Pure de-excitation operators inSq-op when it is possible to
reach a function with fewer valence occupancy.

Figure 4. (a) A zero valence excitation operatorSq-op. (b) A
de-excitation operator with no lines to the right. (c) The product of
two producing a closed operators for one-hole one-particle IMS. (d)
Constraint onX canceling the closed product of twoSq-op in (c). (e) A
typical term whereX appears. (f) The possible counterterm, which could
have canceled (e), but cannot because the diagram is disconnected. This
is why the diagram in (e) remains uncancel if one uses eq 24. On the
other hand, using eq 29, the sum of (e) and (f) generate one of the

entities of {H{exp(S+X)}} and the mutual cancelation can then be
effected.

{H{exp(S+ X)} exp(S+ X)}extP )

{[exp(S+ X)]ext exp(S+ X)Heff}P (26)

{H{exp(S+ X)}′ exp(S)′}extP )
{exp(S)′ exp(S+ X)′extHeff}P (27)

{H{exp(S+ X)} exp(S)′}extP )

{exp(S)′ exp(S+ X)Heff }extP (28)

{H{exp(S+ X)}[k,l]}ext
(k,l)P(k,l) ) {exp(S+ X)ext

[k,l] Heff
[k,l]}ext

(k,l)P(k,l)

(29)

[H{exp(S)}′[k,l]]ext
(k,l)P(k,l) ) [exp(S)′ext

[k,l]Heff
[k,l]]ext

(k,l)P(k,l)

(30)
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of S have been canceled, leaving only connected terms.
Similarly, the corresponding expression forHeff is given by

The above analysis completes the proof of the connectivity
of the cluster operators inS as well as of the closed operator
Heff and hence of the computed energies. Because this proof is
also trivially valid for first set of IMS where all theX operators
in a connected term do have the corresponding closed coun-
terpart coming from powers ofS, this subsumes the situation
involving the first set of IMS as well.

We conclude this section with the interesting observation that
follows from our analysis for certain special class of IMSs as
the quasi-complete model space (QMS)18,34 and isolated IMS
(IIMS).35 A QMS is where one classifies the active orbitals in
various groupsa, b, c, etc. and allocates specific numbers of
electronsna, nb, nc, etc. in these groups in all possible manner.
An m-hole-n-particle IMS containing certain active holes and
particles is an example of QMS. An IIMS is generated when
one starts with an IMS where one of the groupsa is completely
filled in with then required number of electronsna and fills in
the groupb, c, etc. with suitable electronsnb, nc, etc. The union
of these IMS and all those obtained by exciting electrons from
groupa to b and orc, etc. and/or also fromb to c, etc., where
one excites froma up to a fixed number of electrons constitutes
an IIMS. An example of IIMS is the union ofφ0 and all (n-
hole-n-particle) IMS forn ) 1, m, wherem is some integer
g1. For QMS no quasi-open operator can have nonvanishing
model space projection, i.e.,PAq-opP ) 0. Thus, for a QMS,
the use of the additional operatorsX ensuringΩcl ) 1cl would
automatically imply the use of IN forΩ. For an IIMS, also
PΩP ) P if Ωcl ) 1cl.

III. Concluding Remarks

In this paper, we have looked at certain specific aspects of
the choice of size-extensive normalization ofΩ in relation to
maintence of extensivity of the computed energies from anHeff

using an IMS. Following the earlier analysis of Mukherjee26

that, in general, the use of IN forΩ is incompatible with the
size-extensivity of the target state energies, our intention has
been to look for a normalization ofΩ that is as close as possible
to IN. The desire to effect this modification of the formalism is
to generate anHeff that has exactly the same expression as one
would have obtained using IN forΩ. In the context of the VU-
MRCC IMS we have used the concept of the quasi-open and
closed operators, tracing the origin of the size-inextensivity of
the computed energies to the appearance of the quasi-open
matrix elements ofH in a CI with IMS. It has been emphasized
that the size-extensivity of the energies is predicated by the use
of a connectedHeff which is closed. Because the quasi-open
components ofΩ are fixed by the requirement of the vanishing
quasi-open matrix elements ofHeff, we have no flexibility in
fixing them by any other auxiliary conditions. The only
flexibility left is for Ωcl only. We have shown in this paper
that Ωcl can be chosen to be equal to 1cl, which leads to the
same type of expression forHeff a one would have using IN for
Ω. By including closed cluster operatorsX in addition to the
usual open and quasi-open cluster operatorsS in a normal
ordered Ansatz of a VU- wave operator, and by determining
X from the conditionΩcl ) 1cl, a closed connectedHeff can be

obtained with the expressionHeff ) {H{exp(S)′}}cl. The prime
in this expression implies that there are no powers of cluster

operatorsS in this expression that is closed. In this formalism
there is no need to determineX explicitly, because all terms
containingX gets canceled by some powers ofSq-op that are
closed. We have also discussed two special IMS-QMS and
IIMS-where our choice of normalizationΩ automatically
implies IN.
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Note Added in Proof. After the completion of this paper,
we found an alternative and simpler solution to the problem,
where the closed powers of only those quasi-open valence
operators are removed which can appear on both sides of eq 24
via suitableXcl. It leaves out the closed powers ofS(0,0) and the
de-excitation operators but leads again to the simpler expression,
eq 25, for the valence part ofHeff. A detailed discussion of this
formalism will be presented in a forthcoming paper.
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M.; Gauss, J.; Szalay, P. G.J. Chem. Phys.2003, 119, 2991. Hirata, S.;
Bartlett, R. J.Chem. Phys. Lett.2000, 321, 216.

(5) Banerjee, A.; Simons, J.Int. J. Quantum Chem.1981, 19, 207;J.
Chem. Phys.1982, 76, 4548. Hoffmann, M. K.; Simons, J.J. Chem. Phys.
1988, 88, 993.

(6) Malrieu, J. P.; Daudey, J. P.; Caballol, R. J.Chem. Phys.1994,
101, 8908. Meller, J.; Malrieu, J. P.; Heully, J. L.;Chem. Phys. Lett.1995,
244, 440. Meller, J.; Malrieu, J. P.; Caballol, R.J. Chem. Phys.1996, 104,
4068.

(7) Mahapatra, U. S.; Datta, B.; Bandyopadhyay, B.; Mukherjee, D.
AdVances in Quantum Chemistry; Hanstrop, D., Persson, H., Eds.; Academic
Press Inc.: San Diego, 1998; Vol. 30. Mahapatra, U. S.; Datta, B.;
Mukherjee, D.Mol. Phys.1998, 94, 157;J. Chem. Phys.1999, 110, 6171.
Pahari, D.; Chattopadhyay, S.; Das, S.; Mukherjee, D.Chem. Phys. Lett.
2003, 381, 223. Chattopadhyay, S.; Pahari, D.; Mukherjee, D.; Mahapatra,
U. S. J. Chem. Phys.2004, 120, 5968.

(8) Masik, J.; Huba´c, I. In Quantum Systems in Chemistry and
Physics: Trends in Methods and Applications; McWeeny, R., et al., Eds.;
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